Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 1330, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38351066

RESUMEN

Human factors and plant characteristics are important drivers of plant invasions, which threaten ecosystem integrity, biodiversity and human well-being. However, while previous studies often examined a limited number of factors or focused on a specific invasion stage (e.g., naturalization) for specific regions, a multi-factor and multi-stage analysis at the global scale is lacking. Here, we employ a multi-level framework to investigate the interplay between plant characteristics (genome size, Grime's adaptive CSR-strategies and native range size) and economic use and how these factors collectively affect plant naturalization and invasion success worldwide. While our findings derived from structural equation models highlight the substantial contribution of human assistance in both the naturalization and spread of invasive plants, we also uncovered the pivotal role of species' adaptive strategies among the factors studied, and the significantly varying influence of these factors across invasion stages. We further revealed that the effects of genome size on plant invasions were partially mediated by species adaptive strategies and native range size. Our study provides insights into the complex and dynamic process of plant invasions and identifies its key drivers worldwide.


Asunto(s)
Ciudadanía , Ecosistema , Humanos , Tamaño del Genoma , Especies Introducidas , Ecología , Biodiversidad , Plantas/genética
2.
New Phytol ; 239(6): 2389-2403, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37438886

RESUMEN

Karyological characteristics are among the traits underpinning the invasion success of vascular plants. Using 11 049 species, we tested the effects of genome size and ploidy levels on plant naturalization (species forming self-sustaining populations where they are not native) and invasion (naturalized species spreading rapidly and having environmental impact). The probability that a species naturalized anywhere in the world decreased with increasing monoploid genome size (DNA content of a single chromosome set). Naturalized or invasive species with intermediate monoploid genomes were reported from many regions, but those with either small or large genomes occurred in fewer regions. By contrast, large holoploid genome sizes (DNA content of the unreplicated gametic nucleus) constrained naturalization but favoured invasion. We suggest that a small genome is an advantage during naturalization, being linked to traits favouring adaptation to local conditions, but for invasive spread, traits associated with a large holoploid genome, where the impact of polyploidy may act, facilitate long-distance dispersal and competition with other species.


Asunto(s)
Ecosistema , Tracheophyta , Tamaño del Genoma , Ciudadanía , Ploidias , Especies Introducidas , ADN
3.
Methods Mol Biol ; 2672: 25-64, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37335468

RESUMEN

Flow cytometry has emerged as a uniquely flexible, accurate, and widely applicable technology for the analysis of plant cells. One of its most important applications centers on the measurement of nuclear DNA contents. This chapter describes the essential features of this measurement, outlining the overall methods and strategies, but going on to provide a wealth of technical details to ensure the most accurate and reproducible results. The chapter is aimed to be equally accessible to experienced plant cytometrists as well as those newly entering the field. Besides providing a step-by-step guide for estimating genome sizes and DNA-ploidy levels from fresh tissues, special attention is paid to the use of seeds and desiccated tissues for such purposes. Methodological aspects regarding field sampling, transport, and storage of plant material are also given in detail. Finally, troubleshooting information for the most common problems that may arise during the application of these methods is provided.


Asunto(s)
Núcleo Celular , Plantas , Núcleo Celular/genética , Núcleo Celular/química , Citometría de Flujo/métodos , Tamaño del Genoma , ADN de Plantas/genética , ADN de Plantas/análisis , Plantas/genética , Ploidias , Genoma de Planta
4.
Cytometry A ; 101(9): 749-781, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-34585818

RESUMEN

Flow cytometry (FCM) is currently the most widely-used method to establish nuclear DNA content in plants. Since simple, 1-3-parameter, flow cytometers, which are sufficient for most plant applications, are commercially available at a reasonable price, the number of laboratories equipped with these instruments, and consequently new FCM users, has greatly increased over the last decade. This paper meets an urgent need for comprehensive recommendations for best practices in FCM for different plant science applications. We discuss advantages and limitations of establishing plant ploidy, genome size, DNA base composition, cell cycle activity, and level of endoreduplication. Applications of such measurements in plant systematics, ecology, molecular biology research, reproduction biology, tissue cultures, plant breeding, and seed sciences are described. Advice is included on how to obtain accurate and reliable results, as well as how to manage troubleshooting that may occur during sample preparation, cytometric measurements, and data handling. Each section is followed by best practice recommendations; tips as to what specific information should be provided in FCM papers are also provided.


Asunto(s)
Plantas , Ploidias , ADN de Plantas/genética , Citometría de Flujo/métodos , Tamaño del Genoma , Genoma de Planta , Plantas/genética
5.
Cytometry A ; 101(9): 737-748, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-34254737

RESUMEN

In theory, any plant tissue providing intact nuclei in sufficient quantity is suitable for nuclear DNA content estimation using flow cytometry (FCM). While this certainly opens a wide variety of possible applications of FCM, especially when compared to classical karyological techniques restricted to tissues with active cell division, tissue selection and quality may directly affect the precision (and sometimes even reliability) of FCM measurements. It is usually convenient to first consider the goals of the study to either aim for the highest possible accuracy of estimates (e.g., for inferring genome size, detecting homoploid intraspecific genome size variation, aneuploidy, among others), or to decide that histograms of reasonable resolution provide sufficient information (e.g., ploidy level screening within a single model species). Here, a set of best practices guidelines for selecting the optimal plant tissue for FCM analysis, sampling of material, and material preservation and storage are provided. In addition, factors potentially compromising the quality of FCM estimates of nuclear DNA content and data interpretation are discussed.


Asunto(s)
Núcleo Celular , Ploidias , Núcleo Celular/química , Núcleo Celular/genética , ADN de Neoplasias/análisis , ADN de Plantas/genética , Citometría de Flujo/métodos , Reproducibilidad de los Resultados
6.
New Phytol ; 232(3): 1449-1462, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33768528

RESUMEN

Hybrid seed inviability (HSI) is an important mechanism of reproductive isolation and speciation. HSI varies in strength among populations of diploid species but it remains to be tested whether similar processes affect natural variation in HSI within ploidy-variable species (triploid block). Here we used extensive endosperm, seed and F1 -hybrid phenotyping to explore HSI variation within a diploid-autotetraploid species. By leveraging 12 population pairs from three ploidy contact zones, we tested for the effect of interploidy crossing direction (parent of origin), ploidy divergence and spatial arrangement in shaping reproductive barriers in a naturally relevant context. We detected strong parent-of-origin effects on endosperm development, F1 germination and survival, which was also reflected in the rates of triploid formation in the field. Endosperm cellularization failure was least severe and F1 -hybrid performance was slightly better in the primary contact zone, with genetically closest diploid and tetraploid lineages. We demonstrated overall strong parent-of-origin effects on HSI in a ploidy variable species, which translate to fitness effects and contribute to interploidy reproductive isolation in a natural context. Subtle intraspecific variation in these traits suggests the fitness consequences of HSI are predominantly a constitutive property of the species regardless of the evolutionary background of its populations.


Asunto(s)
Arabidopsis , Diploidia , Arabidopsis/genética , Hibridación Genética , Poliploidía , Aislamiento Reproductivo , Tetraploidía , Triploidía
8.
Am J Bot ; 107(10): 1375-1388, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32974906

RESUMEN

PREMISE: Whole genome duplication is a major evolutionary event, but its role in ecological divergence remains equivocal. When populations of different ploidy (cytotypes) overlap in space, "contact zones" are formed, allowing the study of evolutionary mechanisms contributing toward ploidy divergence. Multiple contact zones per species' range are often described but rarely leveraged as natural replicates. We explored whether the strength of niche differentiation of diploid and autotetraploid Arabidopsis arenosa varies over distinct contact zones and if the frequency of triploids decreases from seedling to adult stage. METHODS: We characterized ploidy composition and habitat preferences in 264 populations across three contact zones using climatic niche modeling. Ecological differences of cytotypes were also assessed using local vegetation surveys at 110 populations within two contact zones, and at the finer scale within five mixed-ploidy sites. This was complemented by flow cytometry of seedlings. RESULTS: We found no niche differences between diploid and tetraploid populations within contact zones for either climatic or local environmental variables. Comparisons of cytotypes within mixed-ploidy sites found weak niche differences that were inconsistent in direction. Triploid individuals were virtually absent (0.14%) in the field, and they were at a similarly low frequency (0.2%) in ex situ germinated seedlings. CONCLUSIONS: This study demonstrates the strength in investigating different spatial scales across several contact zones when addressing ecological niche differentiation between ploidies. The lack of consistent habitat differentiation of ploidies across the scales and locations supports the recently emerging picture that processes other than ecological differentiation may underlie ploidy coexistence in diploid-autopolyploid systems.


Asunto(s)
Arabidopsis , Diploidia , Arabidopsis/genética , Humanos , Ploidias , Poliploidía , Tetraploidía
9.
Ecol Evol ; 10(3): 1106-1118, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32076501

RESUMEN

Among the traits whose relevance for plant invasions has recently been suggested are genome size (the amount of nuclear DNA) and ploidy level. So far, research on the role of genome size in invasiveness has been mostly based on indirect evidence by comparing species with different genome sizes, but how karyological traits influence competition at the intraspecific level remains unknown. We addressed these questions in a common-garden experiment evaluating the outcome of direct intraspecific competition among 20 populations of Phragmites australis, represented by clones collected in North America and Europe, and differing in their status (native and invasive), genome size (small and large), and ploidy levels (tetraploid, hexaploid, or octoploid). Each clone was planted in competition with one of the others in all possible combinations with three replicates in 45-L pots. Upon harvest, the identity of 21 shoots sampled per pot was revealed by flow cytometry and DNA analysis. Differences in performance were examined using relative proportions of shoots of each clone, ratios of their aboveground biomass, and relative yield total (RYT). The performance of the clones in competition primarily depended on the clone status (native vs. invasive). Measured in terms of shoot number or aboveground biomass, the strongest signal observed was that North American native clones always lost in competition to the other two groups. In addition, North American native clones were suppressed by European natives to a similar degree as by North American invasives. North American invasive clones had the largest average shoot biomass, but only by a limited, nonsignificant difference due to genome size. There was no effect of ploidy on competition. Since the North American invaders of European origin are able to outcompete the native North American clones, we suggest that their high competitiveness acts as an important driver in the early stages of their invasion.

10.
PLoS One ; 14(7): e0218389, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31260474

RESUMEN

Polyploidy is one of the major forces of plant evolution and widespread mixed-ploidy species offer an opportunity to evaluate its significance. We therefore selected the cosmopolitan species Urtica dioica (stinging nettle), examined its cytogeography and pattern of absolute genome size, and assessed correlations with bioclimatic and ecogeographic data (latitude, longitude, elevation). We evaluated variation in ploidy level using an extensive dataset of 7012 samples from 1317 populations covering most of the species' distribution area. The widespread tetraploid cytotype (87%) was strongly prevalent over diploids (13%). A subsequent analysis of absolute genome size proved a uniform Cx-value of core U. dioica (except for U. d. subsp. cypria) whereas other closely related species, namely U. bianorii, U. kioviensis and U. simensis, differed significantly. We detected a positive correlation between relative genome size and longitude and latitude in the complete dataset of European populations and a positive correlation between relative genome size and longitude in a reduced dataset of diploid accessions (the complete dataset of diploids excluding U. d. subsp. kurdistanica). In addition, our data indicate an affinity of most diploids to natural and near-natural habitats and that the tetraploid cytotype and a small part of diploids (population from the Po river basin in northern Italy) tend to inhabit synanthropic sites. To sum up, the pattern of ploidy variation revealed by our study is in many aspects unique to the stinging nettle, being most likely first of all driven by the greater ecological plasticity and invasiveness of the tetraploid cytotype.


Asunto(s)
Evolución Biológica , Genoma de Planta , Ploidias , Urtica dioica/genética , Adaptación Fisiológica/genética , Asia Occidental , Ecosistema , Europa (Continente) , Tamaño del Genoma , Geografía , Cariotipificación , Selección Genética , Urtica dioica/clasificación
11.
Ann Bot ; 124(2): 255-268, 2019 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-31185073

RESUMEN

BACKGROUND AND AIMS: Polyploidy is an important driver of plant diversification and adaptation to novel environments. As a consequence of genome doubling, polyploids often exhibit greater colonizing ability or occupy a wider ecological niche than diploids. Although elevation has been traditionally considered as a key driver structuring ploidy variation, we do not know if environmental and phenotypic differentiation among ploidy cytotypes varies along an elevational gradient. Here, we tested for the consequences of genome duplication on genetic diversity, phenotypic variation and habitat preferences on closely related diploid and tetraploid populations that coexist along approx. 2300 m of varying elevation. METHODS: We sampled and phenotyped 45 natural diploid and tetraploid populations of Arabidopsis arenosa in one mountain range in Central Europe (Western Carpathians) and recorded abiotic and biotic variables at each collection site. We inferred genetic variation, population structure and demographic history in a sub-set of 29 populations genotyped for approx. 36 000 single nucleotide polymorphisms. KEY RESULTS: We found minor effects of polyploidy on colonization of alpine stands and low genetic differentiation between the two cytotypes, mirroring recent divergence of the polyploids from the local diploid lineage and repeated reticulation events among the cytotypes. This pattern was corroborated by the absence of ecological niche differentiation between the two cytotypes and overall phenotypic similarity at a given elevation. CONCLUSIONS: The case of A. arenosa contrasts with previous studies that frequently showed clear niche differentiation between cytotypes. Our work stresses the importance of considering genetic structure and past demographic processes when interpreting the patterns of ploidy distributions, especially in species that underwent recent polyploidization events.


Asunto(s)
Arabidopsis , Ecosistema , Europa (Continente) , Humanos , Ploidias , Poliploidía
12.
Ecology ; 99(1): 79-90, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29313970

RESUMEN

The literature suggests that small genomes promote invasion in plants, but little is known about the interaction of genome size with other traits or about the role of genome size during different phases of the invasion process. By intercontinental comparison of native and invasive populations of the common reed Phragmites australis, we revealed a distinct relationship between genome size and invasiveness at the intraspecific level. Monoploid genome size was the only significant variable that clearly separated the North American native plants from those of European origin. The mean Cx value (the amount of DNA in one chromosome set) for source European native populations was 0.490 ± 0.007 (mean ± SD), for North American invasive 0.506 ± 0.020, and for North American native 0.543 ± 0.021. Relative to native populations, the European populations that successfully invaded North America had a smaller genome that was associated with plant traits favoring invasiveness (long rhizomes, early emerging abundant shoots, resistance to aphid attack, and low C:N ratio). The knowledge that invasive populations within species can be identified based on genome size can be applied to screen potentially invasive populations of Phragmites in other parts of the world where they could grow in mixed stands with native plants, as well as to other plant species with intraspecific variation in invasion potential. Moreover, as small genomes are better equipped to respond to extreme environmental conditions such as drought, the mechanism reported here may represent an emerging driver for future invasions and range expansions.


Asunto(s)
Áfidos , Poaceae/genética , Animales , Especies Introducidas , América del Norte , Fenotipo , Plantas
13.
Mol Ecol ; 25(16): 3929-49, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27288974

RESUMEN

Quaternary climatic oscillations profoundly impacted temperate biodiversity. For many diverse yet undersampled areas, however, the consequences of this impact are still poorly known. In Europe, particular uncertainty surrounds the role of Balkans, a major hotspot of European diversity, in postglacial recolonization of more northerly areas, and the Carpathians, a debatable candidate for a northern 'cryptic' glacial refugium. Using genome-wide SNPs and microsatellites, we examined how the interplay of historical processes and niche shifts structured genetic diversity of diploid Arabidopsis arenosa, a little-known member of the plant model genus that occupies a wide niche range from sea level to alpine peaks across eastern temperate Europe. While the northern Balkans hosted one isolated endemic lineage, most of the genetic diversity was concentrated further north in the Pannonian Basin and the Carpathians, where it likely survived the last glaciation in northern refugia. Finally, a distinct postglacial environment in northern Europe was colonized by populations of admixed origin from the two Carpathian lineages. Niche differentiation along altitude-related bioclimatic gradients was the main trend in the phylogeny of A. arenosa. The most prominent niche shifts, however, characterized genetically only slightly divergent populations that expanded into narrowly defined alpine and northern coastal postglacial environments. Our study highlights the role of eastern central European mountains not only as refugia for unique temperate diversity but also sources for postglacial expansion into novel high-altitude and high-latitude niches. Knowledge of distinct genetic substructure of diploid A. arenosa also opens new opportunities for follow-up studies of this emerging model of evolutionary biology.


Asunto(s)
Arabidopsis/genética , Genética de Población , Refugio de Fauna , Peninsula Balcánica , Ecosistema , Europa Oriental , Repeticiones de Microsatélite , Filogenia , Polimorfismo de Nucleótido Simple
14.
Ecology ; 96(3): 762-74, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26236872

RESUMEN

The factors that promote invasive behavior in introduced plant species occur across many scales of biological and ecological organization. Factors that act at relatively small scales, for example, the evolution of biological traits associated with invasiveness, scale up to shape species distributions among different climates and habitats, as well as other characteristics linked to invasion, such as attractiveness for cultivation (and by extension propagule pressure). To identify drivers of invasion it is therefore necessary to disentangle the contribution of multiple factors that are interdependent. To this end, we formulated a conceptual model describing the process of invasion of central European species into North America based on a sequence of "drivers." We then used confirmatory path analysis to test whether the conceptual model is supported by a statistical model inferred from a comprehensive database containing 466 species. The path analysis revealed that naturalization of central European plants in North America, in terms of the number of North American regions invaded, most strongly depends on residence time in the invaded range and the number of habitats occupied by species in their native range. In addition to the confirmatory path analysis, we identified the effects of various biological traits on several important drivers of the conceptualized invasion process. The data supported a model that included indirect effects of biological traits on invasion via their effect on the number of native range habitats occupied and cultivation in the native range. For example, persistent seed banks and longer flowering periods are positively correlated with number of native habitats, while a stress-tolerant life strategy is negatively correlated with native range cultivation. However, the importance of the biological traits is nearly an order of magnitude less than that of the larger scale drivers and highly dependent on the invasion stage (traits were associated only with native range drivers). This suggests that future research should explicitly link biological traits to the different stages of invasion, and that a failure to consider residence time or characteristics of the native range may seriously overestimate the role of biological traits, which, in turn, may result in spurious predictions of plant invasiveness.


Asunto(s)
Especies Introducidas , Fenómenos Fisiológicos de las Plantas , Ecosistema , Europa (Continente) , Modelos Biológicos , América del Norte , Desarrollo de la Planta , Dispersión de las Plantas , Factores de Tiempo
15.
BMC Evol Biol ; 14: 224, 2014 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-25344686

RESUMEN

BACKGROUND: Wild relatives in the genus Arabidopsis are recognized as useful model systems to study traits and evolutionary processes in outcrossing species, which are often difficult or even impossible to investigate in the selfing and annual Arabidopsis thaliana. However, Arabidopsis as a genus is littered with sub-species and ecotypes which make realizing the potential of these non-model Arabidopsis lineages problematic. There are relatively few evolutionary studies which comprehensively characterize the gene pools across all of the Arabidopsis supra-groups and hypothesized evolutionary lineages and none include sampling at a world-wide scale. Here we explore the gene pools of these various taxa using various molecular markers and cytological analyses. RESULTS: Based on ITS, microsatellite, chloroplast and nuclear DNA content data we demonstrate the presence of three major evolutionary groups broadly characterized as A. lyrata group, A. halleri group and A. arenosa group. All are composed of further species and sub-species forming larger aggregates. Depending on the resolution of the marker, a few closely related taxa such as A. pedemontana, A. cebennensis and A. croatica are also clearly distinct evolutionary lineages. ITS sequences and a population-based screen based on microsatellites were highly concordant. The major gene pools identified by ITS sequences were also significantly differentiated by their homoploid nuclear DNA content estimated by flow cytometry. The chloroplast genome provided less resolution than the nuclear data, and it remains unclear whether the extensive haplotype sharing apparent between taxa results from gene flow or incomplete lineage sorting in this relatively young group of species with Pleistocene origins. CONCLUSIONS: Our study provides a comprehensive overview of the genetic variation within and among the various taxa of the genus Arabidopsis. The resolved gene pools and evolutionary lineages will set the framework for future comparative studies on genetic diversity. Extensive population-based phylogeographic studies will also be required, however, in particular for A. arenosa and their affiliated taxa and cytotypes.


Asunto(s)
Arabidopsis/clasificación , Arabidopsis/genética , Arabidopsis/citología , Evolución Biológica , Cloroplastos/genética , Ecotipo , Flujo Génico , Pool de Genes , Variación Genética , Genoma del Cloroplasto , Repeticiones de Microsatélite , Filogeografía
16.
Ann Bot ; 111(6): 1095-108, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23589633

RESUMEN

BACKGROUND AND AIMS: Plants endemic to areas covered by ice sheets during the last glaciation represent paradigmatic examples of rapid speciation in changing environments, yet very few systems outside the harsh arctic zone have been comprehensively investigated so far. The Galium pusillum aggregate (Rubiaceae) is a challenging species complex that exhibits a marked differentiation in boreal parts of Northern Europe. As a first step towards understanding its evolutionary history in deglaciated regions, this study assesses cytological variation and ecological preferences of the northern endemics and compares the results with corresponding data for species occurring in neighbouring unglaciated parts of Central and Western Europe. METHODS: DNA flow cytometry was used together with confirmatory chromosome counts to determine ploidy levels and relative genome sizes in 1158 individuals from 181 populations. A formalized analysis of habitat preferences was applied to explore niche differentiation among species and ploidy levels. KEY RESULTS: The G. pusillum complex evolved at diploid and tetraploid levels in Northern Europe, in contrast to the high-polyploid evolution of most other northern endemics. A high level of eco-geographic segregation was observed between different species (particularly along gradients of soil pH and competition) which is unusual for plants in deglaciated areas and most probably contributes to maintaining species integrity. Relative monoploid DNA contents of the species from previously glaciated regions were significantly lower than those of their counterparts from mostly unglaciated Central Europe, suggesting independent evolutionary histories. CONCLUSIONS: The aggregate of G. pusillum in Northern Europe represents an exceptional case with a geographically vicariant and ecologically distinct diploid/tetraploid species endemic to formerly glaciated areas. The high level of interspecific differentiation substantially widens our perception of the evolutionary dynamics and speciation rates in the dramatically changing environments of Northern Europe.


Asunto(s)
Ploidias , Rubiaceae/genética , Ecosistema , Europa (Continente) , Flujo Génico , Variación Genética , Geografía
17.
Ann Bot ; 111(4): 641-9, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23425783

RESUMEN

BACKGROUND AND AIMS: Genome duplication is widely acknowledged as a major force in the evolution of angiosperms, although the incidence of polyploidy in different floras may differ dramatically. The Greater Cape Floristic Region of southern Africa is one of the world's biodiversity hotspots and is considered depauperate in polyploids. To test this assumption, ploidy variation was assessed in a widespread member of the largest geophytic genus in the Cape flora: Oxalis obtusa. METHODS: DNA flow cytometry complemented by confirmatory chromosome counts was used to determine ploidy levels in 355 populations of O. obtusa (1014 individuals) across its entire distribution range. Ecological differentiation among cytotypes was tested by comparing sets of vegetation and climatic variables extracted for each locality. KEY RESULTS: Three majority (2x, 4x, 6x) and three minority (3x, 5x, 8x) cytotypes were detected in situ, in addition to a heptaploid individual originating from a botanical garden. While single-cytotype populations predominate, 12 mixed-ploidy populations were also found. The overall pattern of ploidy level distribution is quite complex, but some ecological segregation was observed. Hexaploids are the most common cytotype and prevail in the Fynbos biome. In contrast, tetraploids dominate in the Succulent Karoo biome. Precipitation parameters were identified as the most important climatic variables associated with cytotype distribution. CONCLUSIONS: Although it would be premature to make generalizations regarding the role of genome duplication in the genesis of hyperdiversity of the Cape flora, the substantial and unexpected ploidy diversity in Oxalis obtusa is unparalleled in comparison with any other cytologically known native Cape plant species. The results suggest that ploidy variation in the Greater Cape Floristic Region may be much greater than currently assumed, which, given the documented role of polyploidy in speciation, has direct implications for radiation hypotheses in this biodiversity hotspot.


Asunto(s)
Variación Genética , Magnoliopsida/citología , Magnoliopsida/genética , Ploidias , África Austral , Biodiversidad , Cromosomas de las Plantas , Citometría de Flujo/métodos , Genética de Población
18.
Ann Bot ; 110(5): 977-86, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23002267

RESUMEN

BACKGROUND AND AIMS: Patterns of ploidy variation among and within populations can provide valuable insights into the evolutionary mechanisms shaping the dynamics of plant systems showing ploidy diversity. Whereas data on majority ploidies are, by definition, often sufficiently extensive, much less is known about the incidence and evolutionary role of minority cytotypes. METHODS: Ploidy and proportions of endoreplicated genome were determined using DAPI (4',6-diamidino-2-phenylindole) flow cytometry in 6150 Gymnadenia plants (fragrant orchids) collected from 141 populations in 17 European countries. All widely recognized European species, and several taxa of less certain taxonomic status were sampled within Gymnadenia conopsea sensu lato. KEY RESULTS: Most Gymnadenia populations were taxonomically and/or ploidy heterogeneous. Two majority (2x and 4x) and three minority (3x, 5x and 6x) cytotypes were identified. Evolution largely proceeded at the diploid level, whereas tetraploids were much more geographically and taxonomically restricted. Although minority ploidies constituted <2 % of the individuals sampled, they were found in 35 % of populations across the entire area investigated. The amount of nuclear DNA, together with the level of progressively partial endoreplication, separated all Gymnadenia species currently widely recognized in Europe. CONCLUSIONS: Despite their low frequency, minority cytotypes substantially increase intraspecific and intrapopulation ploidy diversity estimates for fragrant orchids. The cytogenetic structure of Gymnadenia populations is remarkably dynamic and shaped by multiple evolutionary mechanisms, including both the ongoing production of unreduced gametes and heteroploid hybridization. Overall, it is likely that the level of ploidy heterogeneity experienced by most plant species/populations is currently underestimated; intensive sampling is necessary to obtain a holistic picture.


Asunto(s)
Evolución Biológica , Variación Genética , Genoma de Planta/genética , Orchidaceae/genética , Poliploidía , Cromosomas de las Plantas/genética , Citogenética , Endorreduplicación , Europa (Continente) , Citometría de Flujo , Geografía , Hibridación Genética , Orchidaceae/clasificación , Orchidaceae/citología
19.
Chromosome Res ; 20(2): 303-15, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22362177

RESUMEN

Flow cytometry (FCM) has been widely used in plant science to determine the amount of nuclear DNA, either in absolute units or in relative terms, as an indicator of ploidy. The requirement for fresh material in some applications, however, limits the value of FCM in field research, including plant biosystematics, ecology and population biology. Dried plant samples have proven to be a suitable alternative in some cases (large-scale ploidy screening) although tissue dehydration is often associated with a decrease in the quality of FCM analysis. The present study tested, using time-scale laboratory and in situ field experiments, the applicability of glycerol-treated nuclear suspension for DNA flow cytometry. We demonstrate that plant nuclei preserved in ice-cold buffer + glycerol solution remain intact for at least a few weeks and provide estimates of nuclear DNA content that are highly comparable and of similar quality to those obtained from fresh tissue. The protocol is compatible with both DAPI and propidium iodide staining, and allows not only the determination of ploidy level but also genome size in absolute units. Despite its higher laboriousness, glycerol-preserved nuclei apparently represent the most reliable way of sample preservation for genome size research. We assume that the protocol will provide a vital alternative to other preservation methods, especially when stringent criteria on the quality of FCM analysis are required.


Asunto(s)
Núcleo Celular/genética , Crioprotectores/farmacología , ADN de Plantas/análisis , Citometría de Flujo , Glicerol/farmacología , Preservación Biológica/métodos , Núcleo Celular/efectos de los fármacos , Células Vegetales/química , Células Vegetales/efectos de los fármacos , Temperatura , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...